To master dynamic behavior
Challenges in ECU development for OEM and Tier 1

Dr.-Ing. Ralf Münzenberger
Managing Director Professional Services, INCHRON GmbH

June 19, 2012
The Team

Dr. Wilfried Horn
GE-ES 1, Hella KGaA Hueck & Co.

Dr. rer. nat. Andreas Hermann
I/EE-62, AUDI AG

Bernhard Augustin
I/EE-64, AUDI AG
Overview

1. How to visualize dynamics

2. Dynamic event chains in driver assistance systems

3. Processes and methodologies to master dynamics

4. Robust and scalable architectures – The earlier the better

5. Conclusion
1. How to visualize dynamics

2. Dynamic event chains in driver assistance systems

3. Processes and methodologies to master dynamics

4. Robust and scalable architectures – The earlier the better

5. Conclusion
New Perspectives ➔ New Insights ➔ Better Results
Overview

1. How to visualize dynamics

2. Dynamic event chains in driver assistance systems

3. Processes and methodologies to master dynamics

4. Robust and scalable architectures – The earlier the better

5. Conclusion
Levels in E/E-Systems

Vehicle

Domain

ECU

CPU

Software
E/E-System for a Driver Assistance System
E/E-System – Multiple Suppliers
Function Network

Timing Requirement: $\Delta t \leq 300$ ms
Mapping of Function Network to HW

- Signal detection
- Pre-processing
- Object Verification
- Tracking
- Vehicle Movement
- Decision
- Braking

Timing Requirement: $\Delta t \leq 300$ ms
Event Chain in E/E-System

Signal detection → Pre-processing → Object Verification → Tracking → Decision → Braking → Vehicle Movement

Timing Requirement: $\Delta t \leq 300$ ms
Limited System View of Tier 1

\[\Delta t \leq 250 \text{ ms} \]

\[\Delta t \leq 50 \text{ ms} \]
Multiple Suppliers of SW Components
Event Chain on Time Axis
Event Chain on Time Axis
Tier 1: Event Chain Evaluation
Tier 1: Event Chain Evaluation
Tier 1: Event Chain Evaluation

Timing Requirement: $\Delta t \leq 250$ ms – Failed!

Event chain broken
Data lost
Tier 1: Event Chain Evaluation

- Preemption by other task
- Clock drift and delayed by other task
Event Chain Evaluation – End-to-End
Overview

1. How to visualize dynamics

2. Dynamic event chains in driver assistance systems

3. Processes and methodologies to master dynamics

4. Robust and scalable architectures – The earlier the better

5. Conclusion
Timing Model of Dynamic System Behavior
System Architecture and Requirements

Real-Time Data Sheet

- CPU and Bus Load
- Event Chain Latencies
- Event Chain Synchronization
- Signal Rate, Loss or Age
- Runnable’s Response Time
- Runnable’s Execution Rate and Order
- Runnable’s Activation Condition
- IRQ’s Loss or Blocking

Timing-Model

Real-Time Data Sheet

- CPU and Bus Load
- Event Chain Latencies
- Event Chain Synchronization
- Signal Rate, Loss or Age
- Runnable’s Response Time
- Runnable’s Execution Rate and Order
- Runnable’s Activation Condition
- IRQ’s Loss or Blocking
Real-Time Data Sheet in Early Design Phase

- CPU and Bus Load
- Event Chain Latencies
- Event Chain Synchronisation
- Signal Rate, Loss or Age
- Runnable's Response Time
- Runnable's Execution Rate and Order
- Runnable's Activation Condition
- IRQ's Loss or Blocking

Real-Time Timing-Model

OEM

Tier 1

Tier 2

Tier 1
Continuous Integration and Test
Continuous Integration and Test

Real-Time Data Sheet

- CPU and Bus Load
- Event Chain Latencies
- Event Chain Synchronization
- Signal Rate, Loss or Age
- Runnable’s Response Time
- Runnable’s Execution Rate and Order
- Runnable’s Activation Condition
- IRQ’s Loss or Blocking

Timing-Model
It Doesn’t Take Much to Frontload Dynamic Challenges

Time to create initial dynamic behavior model

- **Body**: 40 man hours
- **Chassis**: 60 man hours
- **Powertrain**: 80 man hours
- **DAS**: 120 man hours
- **Infotainment**: 300 man hours

Very little time to get first valuable insights!
It Takes Very Little Time to do What-if Analysis in Model

Time to model and evaluate changes for DAS

- Synchronisation of CPU Clocks: 0.25
- Execution order of runnable in Task: 0.25
- Task Priority: 0.25
- Offset time triggered tasks: 0.30
- Mapping runnable on different Task (same CPU): 0.30
- Splitting of tasks: 1.00
- Mapping runnable on different CPU: 2.00
- Inter-CPU communication: 18.00
- Extending ECU with CPU and mapping of runnable on new CPU: 24.00

How much time does it take to do the equivalent on your HW? – If that’s possible!
Awareness Grows with Insights

Average number of real-time criteria per project

You can specify, what you can see and measure!

+75% awareness

Conventional Methods vs. Model based with R-T Data Sheets

- Activation Limit
- Buffer overflow
- Event chains
- Load
- Start-to-start jitter
- Response Time ISRs
- Response time task
- Data consistency
If You Can See and Measure, You Can Specify

Categories of real-time errors

- Event chain: 53%
- Load: 60%
- Activation limit: 60%
- Response time of tasks: 67%

Event chain errors are show stoppers!
Increasingly connected and integrated functions.
OEM View: Causes for Event Chain Errors

- Incomplete / wrong specification of r-t requirements: 40%
- Drifting clocks (ECU, bus, gateway): 23%
- Bad mapping (of steps on ECU): 20%

% of projects with causes for errors in event chains
Tier-1 View: Causes for Event Chain Errors

- Incomplete / wrong specification of r-t requirements: 40%
- Unknown interaction HW / SW: 20%
- Bad execution order of steps: 20%
- Unknown order of steps: 23%

% of causes for errors with event chain relevance
End-to-End View OEM: From Radar to Brake

OEM view: Event chain errors in subsystems

- Gateway: 10%
- Bus: 10%
- ECU: 30%
- End-to-End: 67%

% of projects with causes for errors in event chains
End-to-End View Tier-1: From Radar to CAN

Tier-1 view: Event chain errors (ECU perspective)

- Peripheral: 10%
- Application SW: 23%
- Basic SW: 27%
- End-to-End: 50%

% of projects with causes for errors in event chains
Overview

1. How to visualize dynamics
2. Dynamic event chains in driver assistance systems
3. Processes and methodologies to master dynamics
4. Robust and scalable architectures – The earlier the better
5. Conclusion
4. Outlook

- Description of event chains in complex systems is required at an early stage
 - Integral part of the design phase: Feasibility analysis
 - Important criteria in the bid phase: Competence of the supplier

- Clear specification of the roles and responsibilities
 - Who is responsible for the real-time capability
 - Who delivers which contribution to the overall system analysis

- How is real-time capability continuously verified?
 - Model-based approach from project start
 - Ongoing verification of current task-models during development

"Problem only identified during project" ⇔ "next time systematically from the start"
Robustness analysis

- Stress with stimuli
- Load with net execution times
- Drifting, asynchronous clocks
- Increased bus load

Net execution times of all processes were incremented in steps of 10% up to 50%
Feature Ramp Up / Error Ramp Down

Graph based on presentation from
Dr. Karl Fuchs, Continental, BU Infotainment & Connectivity
Frontloading Reduces Risk and Cost

„We have found errors already in simulation, that we would have found 12 months later in testing.“

Undisclosed Tier 1

Level of risk from dynamic behavior errors

Real errors found model based

Real errors found in conventional testing

Project timeline
Overview

1. How to visualize dynamics

2. Dynamic event chains in driver assistance systems

3. Processes and methodologies to master dynamics

4. Robust and scalable architectures – The earlier the better

5. Conclusion
… Even More Perspectives
Conclusion

Real-Time Data Sheet

- CPU and Bus Load
- Event Chain Latencies
- Event Chain Synchronization
- Signal Rate, Loss or Age
- Runnable’s Response Time
- Runnable’s Execution Rate and Order
- Runnable’s Activation Condition
- IRQ’s Loss or Blocking

Function

Developer

Management

Project Leader

Architect